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Abstract—Reducing health inequality has been declared an 

important item on the public health agenda by the World Health 
Organization. We have studied health inequality across US cities 
and states by analyzing data on health services coverage and the 
prevalence of chronic diseases using a cloud architecture. We 
measured the performance of the cloud platform and investigated 
how it scales with the expected future growth of the data set using 
synthetic data sets. 

Our analysis revealed considerable differences between cities 
and states and offers insights into possible causal relationships. A 
ranking of cities based on a composite health score was created as 
a basis for guiding health system policy. 

The cloud platform scaled with increasing data size and was 
shown to deliver satisfactory performance with a single-digit 
number of compute nodes for realistic real-world data size. 
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I. INTRODUCTION 

A. Background and Motivation 
 The World Health Organization has declared reducing health 
inequities an important goal, and the United States has one of 
the least equitable health care systems in the industrialized world 
[1]. There have been substantial investments in collecting data 
that can serve to inform and shape health policies that address 
existing inequities. While the primary reason for investing in 
such data collection was often not the study of health inequities, 
but rather the study of the rapid growth of health care spending 
[2], these datasets are nevertheless often disaggregated in a way 
that allows investigation of potential drivers of inequality.   

In this project we are using tools from the Hadoop ecosystem 
to analyze United States health datasets as released by the Center 
for Disease Control and Prevention (CDC), and the Health 
Inequality Project. We use this data, published as “500 Cities: 
Local Data for Better Health” [3], to both identify the healthiest 
and unhealthiest places to live in the US, and to analyze key 
relationships between health risk factors and outcomes, and life 
expectancy and income by major US City. 

 The purpose of using a Hadoop cluster running in a cloud 
ecosystem for this project is to allow additional large-scale 
datasets to be added to the analyses without significant technical 
impact. For example, the analysis could be extended to 
additional geographic areas outside the 500 cities in the U.S., 
beyond the U.S., or possibly include more detailed salary data 
by city to further investigate socio-economic impacts on health. 
As additional datasets comparable to the 500 cities data are 
currently not publicly available, we have used a re-sampling 

approach to generate arbitrarily-sized synthetic datasets to 
investigate the scalability of our architecture. 

 The intellectual merit of this study lies in developing a better 
understanding of health care inequalities and their impact on 
health in the United States today. Such understanding will be of 
broad interest as health and health care affects everyone equally. 

B. Related work 
While the question of health care inequalities in 

industrialized countries has received considerable attention in 
recent years (see [4] for a review), studies published until 
recently were unable to conclusively identify the main societal 
drivers of health inequities (see for example [5]). 

The CDC 500 cities data set provides an opportunity for 
novel approaches, given the good-quality data at the appropriate 
spatial scale, and the fact that this data has very recently been 
used to study heterogeneity in the prevalence of some chronic 
conditions. An article linking obesity to locales with low-income 
and minority populations was published while we were working 
on this project [6]. 

Given the considerable interest novel computational 
approaches and their potential for innovative data analytics have 
received recently due to success stories in many different 
application domains, one would expect a substantial body of 
literature on this topic in the field of evidence-based health 
research. A workshop organized by the European Commission 
in 2014 on “High Performance Computing (HPC) in Health 
Research” concluded that there are considerable opportunities 
for the integration of HPC in health research [7]. However, as 
illustrated by a recent review article [8], there are, to date, few 
published studies or applications that employ cloud computing 
to address data analytical tasks in health research. 

II. METHODS 

A. DATA 
1) Datasets 

 There are a broad variety of datasets from varying sources 
(and of varying quality) available regarding aspects of health in 
the United States. We chose these datasets firstly, because they 
are from renowned organizations, and secondly, because they 
enable us to focus on the impacts of location and socio-economic 
status on individual health.  

The 500 Cities Dataset [2] is released annually by the CDC 
(https://www.cdc.gov) from a collaboration between the CDC, 
the Robert Johnson foundation and the CDC Foundation. It 
provides 27 key health risk factors and outcomes (listed in 



 

Appendix), for 500 cities and census tracts within the United 
States. 

The Health Inequality Dataset [9] provided by the Health 
Inequality Project (https://healthinequality.org), contains life 
expectancy by US city for men and women by income quartile. 

2) Data Wrangling 
The CDC 500 cities health dataset is keyed by city, and the 

Health Inequality Project Life Expectancy by Income Dataset is 
keyed by commuting zone, so they cannot easily be joined. 
However, being able to see both health and life expectancy by 
income was vital to our analysis. It was a significant challenge 
to research what data is available to allow these to be joined, and 
then to source these data mapping files. The final solution 
required a file to map city to county code (FIPS), and another to 
map commuting zone to county code (FIPS) to enable the join. 

At the completion of Data Wrangling we have a cleansed 
dataset providing a comprehensive view of health, and life 
expectancy by income for 500 Cities across the United States. 

3) Endpoints of analysis 
Tables of the Top 10 most and least healthy places in to live 

were created using a weighted health score based on various 
Preventative Measures, Unhealthy Behaviors and Health 
Outcomes. We attempted to define these weights to align with 
public perception of the criticality of each of the measures, in 
analogy to the disability weights used for the standard 
measurement of burden of disease [10]. We then used the Spark 
MLlib statistics package to generate a correlation matrix and 
heatmap as shown in the Results section below, and we used the 
Python Seaborn library for regression and charting. 
 

B. Cloud Infrastrucure and Toolset 
We used the following tools, mainly from the Hadoop 

ecosystem, to analyze the dataset: 
•   Amazon EC2 for Linux instances 
•   Amazon S3 for data and script storage 
• Spark Datasets and Python/PySpark scripts for data 

wrangling 
•   Jupyter Notebooks with Spark Datasets, and 

Python/Pyspark for data analysis, with Seaborn for 
visualization. 

•   Spark MLlib for statistics and correlations. 

C. Technologies Evaluated 
1) Infrastructure 

Initially, we installed Hortonworks HDP instance as a 
VirtualBox virtual machine (VM) on our individual PCs in 
order to test the required Hadoop components. However, we 
found that firstly, there were components missing or not 
operational (e.g. unsupported old Python version, Zeppelin not 
operational, Jupyter not installed) that took significant time to 
resolve, secondly, the memory requirements were larger than 
our laptops could handle efficiently, and thirdly, that it wasn’t 
a common instance for the team. 

In order to resolve this our initial plan was to export our 
modified Hortonworks VirtualBox (VM) and create an Amazon 
Elastic Compute Cloud (EC2) instance from this. The AWS 
command line interface was used to upload the VM to an AWS 
Simple Storage Service (S3) bucket, and from there this was 
imported into EC2. Unfortunately, the AWS verification 
program reported that it was not compatible with EC2 due to an 
unsupported kernel version in the VM, and it was not clear if 
this could be resolved, so an alternative plan was required. 

After trying unsuccessfully to resolve an unsupported kernel 
version error, we decided to look at pre-existing AMIs provided 
by AWS to see if any would support our PySpark/Jupyter 
notebook solution.   We found an acceptable AMI, the Deep 
Learning AMI (Ubuntu) Version 5.0 AMI.   With minimal 
configuration effort we were able to upload our notebook and 
run it on this EC2 instance.  We uploaded all our data to an AWS 
S3 bucket and, with the appropriate security in place, were able 
to successfully access the S3 bucket from the Jupyter notebooks 
running on our local browsers. 

2) Toolset 
The process of deciding on this toolset included investigating 

Hive as a query tool, developing trial scripts (e.g. to find the 
best/worst cities for health score), and developing a Java 
program to call Hive. However, it soon became clear that the 
interactive/programmatic statistical analysis we required would 
be infeasible using Hive. 

We then investigated Pyspark with Zeppelin notebooks 
however, Zeppelin on Hortonworks proved both difficult to use 
and not properly configured. Additionally, Spark shell and Scala 
proved to be time consuming to learn and had limited charting 
capabilities. 

Further investigation into Spark revealed that for our 
structured tabular data that Spark RDD’s were not ideal and that 
Spark Dataframes would be a better option. 

We finally decided on Jupyter notebooks for the interactivity 
and flexibility, Spark Dataframes for its high-volume data 
capabilities and interactive performance, and PySpark to enable 
the use of Python and libraries such as Seaborn for charting,  
 

D. Final Architecture 
The cloud architecture for our project is shown in Figure 1 

below: 

 
Figure 1 

 
The system architecture consists of three main components: 
1. AWS S3 Data Store 
2. AWS EMR Cluster 
3. AWS EC2 Node 
 

The PySpark application was divided into two parts: 1) the 
data transformation that ran on an EMR cluster and 2) the data 
analysis and visualization that ran on an EC2 node.  The input 



 

and output files for the application resided on an AWS S3 
bucket. 
 

1) AWS S3 Data Store 
The input and output files shared a common Simple Storage 

Service (S3) bucket. The PySpark data transform application 
also resided on the same S3 bucket, so that no local EBS storage 
was utilized either on the EC2 node or EMR cluster. 
 

2) AWS EMR Cluster 
The PySpark data transformation ran as a standalone step on 

the EMR master node.  The number of slave nodes was varied 
from 0 to 16 for our scalability testing.  All EMR nodes were of 
AWS instance type m4.large with the following hardware 
characteristics:  4 Virtual Cores, 8 GB memory, 32 GB EBS 
storage.   The default Ubuntu Deep Learning AMI was installed 
on each node, along with Hadoop 2.8.3, Spark 2.3.0, and Python 
3.6. 

The PySpark application ran as a YARN (Yet Another 
Resource Negotiator) client, and YARN and Spark handled the 
distribution of work over the EMR cluster.   Spark, running on 
EMR, used the EMRFS (EMR File System), to directly access 
the input data stored on S3 and to write the output data to S3. 
     

3) AWS EC2 Node 
The Elastic Compute Cloud (EC2) node ran the Jupyter 

Notebook server using Python/PySpark. The EC2 node 
accessed the S3 data files on S3, that were previously generated 
by the EMR cluster, to perform data analysis using Spark MLib 
and data visualization using the Seaborn library. 

The EC2 Node utilized the same node type as EMR, i.e. the 
AWS instance type m4.large.   The Linux system configuration 
on the EC2 node was the Amazon Machine Instance (AMI) 
Deep Learning AMI (Ubuntu) Version 8.0. 

The EC2 node could be accessed by any browser on the 
public internet that had access to the correct security key. 
 

III. RESULTS 

A. Performance and Scalability 
The Spark data transformation application was run on the 

master cluster node with Number of Cities = (500, 5000, 50000) 
and number of slave cluster nodes = (0, 1, 2, 4, 8, 16).  The 
results are shown in Figure 2 below: 

 
Figure 2 

 

For each of our test sets of cities, we calculated the optimal 
number of slave nodes and the execution time improvement for 
that configuration.  This data is shown in Table 1 below: 
 

Number of 
Cities 

Optimal Cluster 
Slaves Nodes 

Execution time 
improvement 

500 2 33% 
5,000 4 37% 
50,000 8 59% 

Table 1 

As an additional test, we ran a 500,000 cities instance. We 
did not include this in our results, as there are not 500,000 cities 
in the world, but we used it as a scaling check for optimal node 
calculation. It resulted in the same number of optimal slave 
nodes (8) as the 50,000 city test. 
 
 

B. Data Analysis 
 

1) Top 10 Cities 
 Table 2 shows the top 10 best and worst cities for overall 
health among the 500 cities analyzed. 

       
Table 2 

 

2) Best and Worst, States and Cities 
In this and the following sections, we use the possibly 

emotive terms ‘rich’ to refer to the top 25% of income earners, 
and ‘poor’ to refer to the bottom 25%. The unhealthy behavior 
rate is an average of the rates for all unhealthy behaviors (e.g. 
smoking, obesity, etc.), and the same applies to the preventative 
measures rate (e.g. annual health check), and to the health 
outcomes rate (e.g. cancer, heart disease). 

 
NB: Order is Best, 2nd 
Best, 3rd Best Best States Worst States 

Life Expectancy Hawaii, Idaho 
Nevada, Oklahoma: 
~2.8years worse 

Rich/Poor Gap in 
Life Expectancy California, New Mexico, Florida 

Wyoming, Delaware, 
Maryland: ~5 years worse 

Unhealthy Behavior 
Rate Vermont, Colorado, Utah: ~21% 

Mississippi, New Jersey, 
Delaware: ~30% 

Serious Disease Rate 
Vermont, North Dakota, 
Minnesota: ~10% 

West Virginia, Ohio, 
Mississippi: ~16% 

Heart Disease Rate Vermont, DC, Alaska, Utah: ~4% 
West Virginia, Ohio, 
Pennsylvania: ~8% 

Smoking Rate Utah, California, Hawaii: ~13% 
Ohio, Maryland, 
Mississippi: ~25% 

Obesity Rate 
Vermont, Hawaii, Colorado: 
~20% 

Mississippi,  Delaware, 
Louisiana: ~37% 

Dental Health 
(>65yo, lost all teeth) 

Hawaii, Minnesota, North 
Dakota: ~7% 

Ohio, West Virginia, 
Mississippi: ~23% 

 
 
 



 

NB: Order is Best, 2nd 
Best, 3rd Best Best Cities Worst Cities 

Life Expectancy 
Santa Fe NM, San 
Jose/Sunnyvale/Santa Clara CA 

Columbus GA, Henderson 
NV, Las Vegas NV: ~4 
years worse 

Rich/Poor Gap in 
Life Expectancy Laredo TX, Yuma AZ 

Wichita Falls TX, 
Champaign IL, Decatour 
IL:~8 years worse 

Unhealthy Behavior 
Rate 

Newport Beach/Irvine CA, 
Boulder CO: ~17% 

Detroit MI, Camden NJ, 
Youngtown OH, Flint MI, 
Gary IN: ~35% 

Serious Disease Rate 
College Station TX, 
Irvine/Mountain View CA: ~8% 

Gary IN, Youngstown OH, 
Detroit/Flint MI: ~20% 

Heart Disease Rate 
College Station TX, Provo UT: 
~2.6% 

Youngstown OH, Gary IN: 
~10% 

Smoking Rate 
Orem UT, Sunnyvale/Newport 
Beach CA: ~9% 

Flint MI, Detroit MI, 
Youngstown OH: ~30% 

Obesity Rate 
Irvine/Fremont/Milpitas CA, 
Boulder CO: ~15% 

Gary IN, Detroit MI, 
Reading PA, Birmingham 
AL: ~44% 

Dental Health 
(>65yo, lost all teeth) 

San Remon/Redondo Beach CA: 
~5% 

Gary IN, Trenton NJ, 
Youngstown OH: ~30% 

Table 3 

While, for brevity, Table 3 only shows the top two or three 
best/worst cities or states, it is notable that the same cities/states 
keep appearing in the best or worst of many measures. For 
example, Gary, Indiana is the worst city for dental health, 
obesity, smoking and is therefore among the worst cities for 
overall unhealthy behaviors.  It is unlikely to be a coincidence 
that it also has the worst overall rate of Serious Disease, and the 
5th lowest life expectancy. For states, Vermont has the lowest 
obesity rates (and lowest overall Unhealthy Behavior Rate), and 
again probably not coincidentally, the lowest serious disease 
rate.  

Since states or cities that are the worst with one unhealthy 
behavior tend to be the worst with other unhealthy behaviors 
(and the same applies to serious diseases and preventative 
measures) there are clearly underlying probable socio-
economic factor(s) driving this. Whilst there is insufficient data 
to establish the causal factors, we can hypothesize that income-
related factors such as education and health-insurance may be 
significant contributing factors. 
 

3) Life Expectancy and Health 
We find a high level of stratification of life expectancy by 

income quartile, showing an approximate 8-year gap between 
the rich and the poor (Figure 3). We can also see the relationship 
between the general health of a city and life expectancy, though 
it appears to be a fairly weak relationship with only as little as 
a year for cities with the worst health compared with those with 
the best. Somewhat surprisingly, the impact of wealth on life 
expectancy is much more significant that the general health of 
the particular city. 
 

 
Figure 3 

 
The following three charts’ regression slopes show that life 

expectancy for the poor is much more adversely associated with 
Unhealthy Behaviours (Figure 4b), and Health Outcomes or 
Problems (Figure 4c), than for the rich. Figure 4a suggests that 
the poor gain much more benefit from preventative measures. 

 
Figure 4 

 
The following charts show that life expectancy for both the 

rich and the poor is affected by Smoking (Figure 5b), Obesity 
(Figure 5c) and Inactivity (Figure 5d), but again the regression 
slopes show that the poor are much more adversely affected 
than the rich. Somewhat surprisingly Binge Drinking seems to 
have almost no relationship to life expectancy, and for the rich 
there is actually a slight positive relationship (Figure 5a). We 
can only hypothesize that other factors such as level of 
education, being a college student where this is prevalent [11], 
or being wealthy enough to afford to binge drink is balancing 
the negative effects.  

 



 

 
Figure 5 

 
4) Other Notable Findings 

Large cities (over 1 million) tend to have slightly worse 
preventative measures, and slightly worse unhealthy behaviors 
than smaller cities, However, the average life expectancy is 
essentially identical. Large cities also have slightly lower life 
expectancy gaps between rich and poor. 

There is a region of central Illinois where the rich vs poor 
life expectancy gap is among the widest in the country 
(Champaign Illinois has the second-most unequal life 
expectancy between rich and poor). There is also region of far 
southern Texas where this gap is among the smallest. 

There is a fairly high correlation (0.75) between average life 
expectancy and the gap in life expectancy between rich and 
poor. Unfortunately, it seems there is little trickle-down effect 
from good health in the rich to good health in the poor. This is 
confirmed by surprisingly low correlations of only 0.33 and 0.5, 
for women and men respectively, between the life expectancy 
for the rich and life expectancy for the poor. 

In addition to the above, the correlation between 
Preventative Measures and Health Outcomes is only 0.27, so 
while there may be other hidden factors, this low rate does 
imply that Annual Checkups, Cholesterol screening etc. (full 
list in the Appendix, Table II), are having a limited impact on 
health outcomes (disease). Whereas the correlation coefficient 
of Unhealthy Behaviors and Health Outcomes is 0.84 indicating 
a very strong relationship between measures such as smoking 
obesity etc. and cancer, heart disease etc.  

A reasonable (but not provable) hypothesis from this data is 
that this relationship is causative. So while Preventative 
Measures appear not to be particularly ‘preventative’, it appears 
that Unhealthy Behaviors may be strongly causative. 

While the income vs life expectancy data showing a very 
significant impact of wealth (or lack thereof) on life 
expectancy, is bad news for those near the bottom of the socio-
economic ladder. The good news is that this can to some extent 
be mitigated by an individual’s choice to reduce their Unhealthy 
Behaviors. 
 

5) Correlations 
The correlation heatmap below (Figure 6) is an initial 

investigation of relationships between health measures. Some 
correlations indicate interesting and plausible interrelationships 
between health measures, while others are possible artefacts 
due to confounding factors, and will need further investigation.  

 
Figure 6 

A closer look at the correlations between different measures 
reported in the data is largely consistent with expectation. For 
almost all pairs of unhealthy behaviors and preventive measures 
(combined as “risk factors” in the analysis), the sign of the 
correlation is negative for predictors generally associated with 
poor outcomes, and vice versa. A notable exception is binge 
drinking, which is negatively correlated with almost any other 



 

Unhealthy Behavior  measure as discussed in the Other Notable 
Findings section above.  

Measures in the Health outcome category are mostly 
strongly positively correlated among themselves. Cancer is the 
only health problem which shows only small positive or even 
slightly negative correlations with other health outcomes. 

An analysis of the relationship between risk factors 
(Unhealthy Behaviors) and health outcomes is significantly 
more problematic than the analysis within each of these two 
categories. The correlation structure is in many places hard to 
reconcile with well-established bio-medical facts: for example, 
there is no clear relationship between smoking and cancer 
apparent in the data. It is not surprising that the nature of the 
data doesn’t capture the causal relationships in many cases: one 
obvious shortcoming is both risk factors and health outcomes 
are measured instantaneously, when in reality there is a 
substantial delay expected before health consequences 
manifest. 
 

IV. CONCLUSIONS 
Our analysis of a data set on health-relevant practices and 

health outcomes from 500 US cities using a cloud architecture 
confirmed that there are substantial health inequities at both the 
city and state levels. Our rankings of cities and states highlights 
the extremes as a first step to inform health policies towards a 
more equitable national health system. 

Linking to additional data sets on wealth, and life 
expectancy, has corroborated the observations that poverty and 
poor health often go together, possibly because of the strong 
relationship of poverty and unhealthy behavior. In addition, the 
data set largely confirms that health inequities affect different 
areas of the health services and health outcomes in similar 
ways, but it also provides some interesting exceptions that 
would be worth exploring further. 

Using a Spark AWS EMR cluster for this project proved to 
be an effective technology choice and scaled well as we 
increased the number of cities.  Although the number of cities 
in the world is capped and finite, the dimensionality and 
complexity of our data analysis could increase in the future and 
we have shown that optimal performance can be achieved with 
a small number of cluster nodes.  
 

V. APPENDIX 

TABLE I.  500 CITIES DATASET DEFINITION 

Column Name Description Type 
Year Year Number 
StateAbbr State abbreviation Plain Text 
StateDesc State name Plain Text 
CityName City name Plain Text 
GeographicLevel Identifies either US, City or 

Census Tract 
Plain Text 

DataSource Data source Plain Text 
Category Topic Plain Text 
UniqueID City FIPS code  Plain Text 
Measure Measure full name Plain Text 
Data_Value_Unit The unit,"%" for percent Plain Text 
DataValueTypeID Id for the data value type Plain Text 
Data_Value_Type Age-adjusted prevalence or 

crude prevalence 
Plain Text 

Data_Value Data Value, such as 14.7 Number 
Low_Confidence_Limit Low confidence limit Number 
High_Confidence_Limit High confidence limit Number 
Data_Value_Footnote_Symbol Footnote symbol Plain Text 
Data_Value_Footnote Footnote text Plain Text 
PopulationCount Population count from census 

2010 
Number 

Column Name Description Type 
GeoLocation Latitude, longitude of city or 

census tract centroid 
Location 

CategoryID Identifier for Topic/Category Plain Text 
MeasureId Measure identifier Plain Text 
CityFIPS FIPS code Plain Text 
TractFIPS FIPS code Plain Text 
Short_Question_Text Measure short name Plain Text 

Table 4 

TABLE II.  HEALTH RISK FACTORS AND OUTCOME AS PERCENT OF 
POPULATION 

Unhealthy Behaviors 
Binge drinking among adults aged >=18 Years 
Current smoking among adults aged >=18 Years 
Visits to dentist or dental clinic among adults aged >=18 Years 
No leisure-time physical activity among adults aged >=18 Years 
Sleeping less than 7 hours among adults aged >=18 Years 
 
Preventative Measures 
Doctor visit for routine checkup in the past year for adults aged >=18 Years 
Cholesterol screening among adults aged >=18 Years 
Fecal blood test, sigmoidoscopy, or colonoscopy, adults aged 50–75 Years 
Older adult men aged >=65 Yrs up to date on a set of  preventive services 
Older adult women aged >=65 Yrs up to date on set of preventive services 
Mammography use among women aged 50–74 Years 
Papanicolaou smear use among adult women aged 21–65 Years 
 
Health Outcomes 
Arthritis among adults aged >=18 Years 
High blood pressure among adults aged >=18 Years 
High blood pressure control medication among adults aged >=18 Years  
Cancer (excluding skin cancer) among adults aged >=18 Years 
Current asthma among adults aged >=18 Years 
Coronary heart disease among adults aged >=18 Years 
Chronic obstructive pulmonary disease among adults aged >=18 Years 
Physical health not good for >=14 days among adults aged >=18 Years 
Diagnosed diabetes among adults aged >=18 Years 
High cholesterol in adults aged >=18 Years, screened in the past 5 Years 
Chronic kidney disease among adults aged >=18 Years 
Mental health not good for >=14 days among adults aged >=18 Years 
Obesity among adults aged >=18 Years 
Stroke among adults aged >=18 Years 
All teeth lost among adults aged >=65 Years 
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